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Abstract. Systematic review is given of development of novel heat switches at cryogenic 
temperatures that alternatively provide high thermal connection or ideal thermal isolation to the 
cold mass. These cryogenic heat switches are widely applied in a variety of unique 
superconducting systems and critical space applications. The following types of heat switch 
devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential 
thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) 
cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages 
and limitations of different cryogenic heat switches are examined along with the outlook for 
future thermal management solutions in materials and cryogenic designs.  

1.  Introduction 
Thermal management applications in the field of cryogenic engineering and related sciences are crucial. 
Often required is the heat switch, a novel device with an externally controlled variable heat conduction, 
working in a prescribed temperature range from about 50 mK to near 400 K. Heat switches can 
alternatively provide high thermal connection or ideal thermal isolation to the cold mass. Heat switches 
are used to minimize heat loads on the cooling system by disconnecting components when cooling is 
not required, or disconnecting redundant refrigerators that are turned off or failed. Heat switches also 
provide the vital thermal connection between objects and the cooling system as needed. 

Various cryogenic detectors in space are normally cooled by a running cryocooler with a second 
redundant cryocooler as back-up. Such configurations rely on one heat switch to provide high thermally 
conductive connection to the running cryocooler and another heat switch to thermally isolate the 
redundant cryocooler [1,2]. Multi-stage adiabatic demagnetization refrigerators (ADR) are currently 
being developed for future x-ray, infrared, and sub-millimeter astronomy missions. Heat switches have 
long been successfully used in single stage magnetic refrigerators as well as developed for multi-stage 
demagnetization refrigerators [3,4,5]. For many scientific research efforts in the fields of condensed 
matter physics, optical/laser, and radio frequency experiments, novel heat switches were developed to 
thermally connect and/or isolate the objects to the LHe bath or cryogen-free cooling stage [6]. Heat 
switches have also been implemented in many other applications such as superconducting levitation.  

 For the basis of defining the heat switch ratio, a simplified example cryogenic heat switch (CHS) is 
shown in figure 1. With the switch closed, heat flows from the cooled object to the cryocooler at 
temperature Tc. For simplicity, the transition process is ignored so that the ∆T (or D) is constant and D 
is assumed much smaller than Tc. When the switch is opened, a degree of isolation between the cooled 
object and the redundant cooler is provided. The heat flow rate between the object and the two coolers 
is represented in equation (1). 
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                              𝑄̇𝑄1 =  ∫ 𝐾𝐾(1)𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇+𝐷𝐷
𝑇𝑇𝑇𝑇       and      𝑄̇𝑄2 =  ∫ 𝐾𝐾(0)𝑑𝑑𝑑𝑑𝑇𝑇ℎ

𝑇𝑇𝑇𝑇+𝐷𝐷                            (1) 

In practice, other parasitic heat flows into the coolers. Equation (1) assumes that the additional loads are 
either small or can be included in the thermal conductance (K). Common definitions of the heat switch 
ratio are given in equation (2). One option (left) is the thermal conductance ratio based on the physical 
properties of the switch and not on the application details. This approach allows evaluation of a potential 
switch prior to the development of the detailed design. The second option (right) is the ratio of heat 
flows representing the usage configuration of the switch including various parasitic losses. 

                                                  Rk = K(1) / K(0)    or    Rh = 𝑄̇𝑄1 / 𝑄̇𝑄2                 (2) 

      There exist various kinds of heat switches for different cryogenic applications, each with its own 
advantages and limitations. One kind can work well in a particular application, but may underperform 
or even fail in another situation. The heat switch ratio is a non-dimensional parameter used to compare 
the performance of heat switches and strongly depends on the properties of materials of construction. 
The material properties depend on temperature. Therefore, the design of a given switch is highly limited 
to and dependent upon the temperature extremes of the application. The geometric configuration, weight 
limitation, and capacity of the available electrical power in the applications will also constrain the design. 
Numerous cryogenic heat switches (CHS) have been developed based on the above discussion, technical 
methods, and customers’ varied requirements. These are briefly reviewed and discussed as follows.  

 

Figure 1.  Simplified cryogenic heat switch 
(CHS) arrangement: instrument being 
cooled and redundant cryocooler off. 
 

2.  Cryogenic Thermal Diode Switch (CTDS) 
The thermal diode described here is a device which causes heat to flow preferentially in one direction, 
like a heat-pump. It usually works with a type of heat pipe that will only allow heat to flow from the 
evaporator to the condenser. To provide the function of the heat switching, the heat pipe was modified 
by using small diameter stainless steel tubing to connect it to a liquid trap (LT) cooled by a small 
secondary cooler which is thermally isolated from the primary cooler. During normal operation, a small 
heater keeps the LT filled only with vapor. To effectively turn off the heat pipe, the primary cooler is 
heated, and the the small heater is ramped down, then the LT captures the working fluid. 
      Paulsen [7], Cepeda-Rizo [8], and Bugby [9] have developed several CTDS. The latter two devices 
employ a methane heat pipe with a liquid trap for on-off actuation. It allows heat to flow in only one 
direction (forward mode) to thermally manage two CCD cameras on the NASA/JPL SIM Lite telescope 
as shown in figure 2. The LT is positioned on the condenser end and it has its own cooling source. 
During normal operation, the small LT heater keeps the LT warm enough so that it is filled only with 
vapor while the heat pipe is on. To turn off the heat pipe, the LT heater is turned off and all working 
fluid migrates to the LT. With the heat pipe in the off condition, only a small amount of heater power is 
required on the evaporator end to achieve a significant temperature rise for decontamination. The heat 
pipe can be turned back on by simply re-powering the LT heater. At a hot-side temperature of 150 K the 
heat load is 6–12 W. The cold-side cryo-radiator is at 140 K with a transport length of 1.4 m.  
Periodically, the hot-side is heated to 293 K with minimal heater power for decontamination. The CTDS 
can also work for the cryocooler redundancy application. A suitable working gas should be chosen for 
each particular application depending on the operational temperature extremes. 
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Figure 2. Camera aboard the SIM Lite observatory (left); concept of cryogenic heat switching using a 
heat pipe (right) [8-9].  

3.  Superconducting Heat Switch (SHS) 
In pure metal the thermal conduction in the normal state is dominated by the electronic conduction term, 
and the lattice conduction term (phonon conductivity) can be neglected. As the metal becomes 
superconductive (table 1) its thermal conductance Ks falls below the value of the normal phase Kn. This 
decrease in thermal conductance is caused by the gradual disappearance from the thermal distribution 
of the free electrons. Therefore, the ratio the electronic thermal conductivity in the normal state to the 
phonon thermal conductivity in the superconducting state can be larger than 105. 

Table 1.  Several superconductors in CHS with perpendicular H assumed [5]. 
Material Tc (K) Hc (mT) Tupper(K) 
Zn 0.85 5.3 <0.1 
Al 1.2 10.5 0.1 
In 3.4 29.3 0.5 
Sn 3.7 30.9 0.52 
Pb 7.2 80.3 0.5 

Based on the thermal properties of superconductors, various types of the SHS have been proposed, 
tested and implemented at very low temperatures [10-13]. For example, Krusius [10] developed a SHS 
with zinc foil for large heat flow below 50 mK. Zinc was chosen because of its advantages of mechanical 
performance, ease of soldering to copper base, and good thermal cycling.  

To obtain higher total thermal conductance, a large cross sectional area of the switch is required. To 
avoid magnetic flux trapping, the switch is divided into smaller elements whose cross section to length 
is sufficiently small. The switch is thus composed of many parallel foils or wires. Krusius used nine 
0.17-mm-thick zinc foils, which were indium soldered to copper end posts. The switch is operated by a 
small superconducting magnet with 65 mA to close the switch between a He3–He4 dilution refrigerator 
and an adiabatic demagnetization refrigerator (ADR) in the precooling process.   

More challenges in recent high-resolution detectors for both space astronomy and some laboratory 
uses are requirements for targets cooled to extremely low temperature (below 50 mK) with much smaller 
heat loads (10 µW). These systems employ the use of mechanical coolers (instead of a dilution 
refrigerator) at higher precooling base temperatures (4–10 K). Shirron, Canavan, and Dipirro [11,13] 
have successfully designed and developed the multi-stage (3 and 4 stages) ADR system that can provide 
continuous cooling as summarized in figure 3.  

Success of the continuous ADR also depends on having suitable heat switches. In the continuous 
stage, the switch must efficiently transfer heat at temperature difference of only 5–10 mK. The 
superconducting switch has the much higher on/off conductance ratio (from 105 at 50mK to about 103 
for a magneto-resistive (MR) switch) and was chosen for Stage 1. The metal In (99.99 +%) with OFHC 
copper end pieces was used while Sn and Al was a design alternative. The superconducting heat switch 
has an on/off ratio of 2,000 at 50 mK with an on-stage conductance of 8 mW/K. 



4

1234567890

CEC 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 278 (2017) 012133 doi:10.1088/1757-899X/278/1/012133

 
 
 
 
 
 

 
Figure 3. The 4-stage continuous ADR [13] (A); a photo of the SHS used in a continuous ADR [5] (B); 
the SHS in [11] (C). 

4.  Magneto-resistive Heat Switch (MHS) 
At low temperature, electron thermal conductivity is a linear function of temperature, while phonon 
thermal conductivity drops off as the cube of the absolute temperature. Electronic heat conduction in 
compensated elemental metals (Ga, Cd, Be, Zn, Mo, and W) at low temperature can be suppressed so 
thoroughly by a several Tesla magnetic field that the heat is effectively carried only by phonons. In 1-
mm diameter single crystal samples, the ratio of zero field to high-field thermal conductivity can exceed 
10,000. Duval [14], Tai [15], Canavan [5,16] and others, used this phenomenon to build solid-state 
cryogenic heat switch (CHS) with no moving parts and no enclosed fluid.      

In a standard ADR the magneto-resistive (MR) heat switch would require a rather large magnet to 
put it into the off-state at the proper time. Because mass is such an important criterion for a spaceflight 
instrument, the MR switch at a severe disadvantage relative to alternatives. Canavan et al. minimized 
the mass and complexity of the controlling magnet for use in the continuous ADR. Tungsten is a good 
candidate because of its low Tc (15 mK) and reasonably high Debye temperature (310 K).  The design 
element is shown in figure 4. Starting with the largest diameter tungsten single crystal available, a wire 
EDM process is used to cut a disk 20 mm in diameter by 5.1 mm thick. The cylinder (z) axis is aligned 
with the 001 direction. Two slots are then cut in the horizontal (xy) plane and nine in the xz plane as 
shown in figure 4.  

 

Figure 4. Design 
element with shape 
cut from a tungsten 
single crystal by 
wire EDM [5];  
 

5.  CHS Using Differential Thermal Expansion (DTE)  
Many CHS have been developed based on differential thermal expansion (DTE) coefficients for space 
and ground applications [17-20]. Dietrich successfully designed and tested two DTE devices for 
application around 100 K using one of the highest DTE thermoplastic (ultra-high molecular weight 
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polyethylene) of a single focal plane array detector (FPA). Electrical power is not required during normal 
operation nor for switching. This feature enhances reliability and allows for a simple mechanical design. 

The switch also needs to serve as a support for the FPA. The contact areas that are connected to the 
cold head and FPA must not move upon switching. The switch should present an ‘on’ conductance of 
>1 W/K at an operating temperature between 80–100 K, and an ‘off conductance of <1 mW/K. With 
thermoplastics having a relatively high DTE compared to metals but a low thermal conductivity, designs 
can use a thermoplastic as the switching element for bringing two metals into contact.  

The sectional drawing and a 3D-model of the single, cylindrical switch design are shown in figure 5. 
The part connected to the heat load (detector side) consists of an inner shaft made of a solid copper 
cylinder (10 mm diameter) with a flange on one end. The part connected to the cold head (PE-side) 
consists of a copper flange with four integrated copper jaws that are separated from the inner cylinder 
by the gap. The two copper parts are held together by four thin stainless steel tubes (2 mm diameter by 
150 µm wall thickness) which determine the thermal off-state resistance. The contact pressure of the 
jaws to the shaft at 100 K was estimated to be 1.4 MPa, while the maximum tensile stress in the UHMW-
PE was estimated to be 5 MPa. 

 

 (C) 
Figure 5. Design of DTE CTS [17] (a, b); photo of another DTE design [18] (c). 

Bugby et al. developed several DTE devices for applications around 30–100 K such as the James 
Webb Space Telescope (JWST) [18].  High-purity Al end pieces and an Ultem support rod were chosen 
as key materials to build the CHS in figure 5c, which reaches an ‘on’ conductance of 2–3.6 W/K (from 
35–90 K) and an ‘off’ thermal resistance (the inverse of the thermal conductance) of 1100–2300 K/W 
(300–230 K warm end). Thompson et al. reported a Quad-Redundant Heat Switch (QRTS) for the JWST.   

6.  CHS Using Piezo-electric Actuator (PZA) 
A novel mechanical cryogenic heat switch actuated by a piezoelectric positioner, the PZA has been 
designed and tested at 4-10 K by Jahromia [21]. Thermal conductance of the PZA was measured 
between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved with the positioner 
applying its maximum force of 8 N. Cryogenic electromechanical behaviour of multilayer piezo-
actuators has been studied by Shindo [22]. The PZA is an attractive alternative technology to a gas-gap 
heat switch, since this device has an essentially unlimited range of cryogenic operating temperatures, 
is mechanically robust, and is also free from hermetic sealing requirements. The principle of the PZA 
is quite simple as shown in figure 6. When the positioner is energized, the lower plate moves upwards 
until mechanical contact is established with the upper plate. After the desired heat transfer is complete, 
energizing the positioner with negative voltage moves it downwards until the switch opens. Further 
improvement is depicted in figure 6 (right) where the contact surfaces were plated with ~ 1 µm of Au. 
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The plating prevents tarnishing of the copper and also acts as a "cushion" to the switch surfaces, further 
enhancing the effective contact area. The PZA conductance is 2.8 mW/K at 4 K. 

  

Figure 6. Schematic of the PZA 
design: support plates (1, 7), 
piezoelectric positioner (2), insulator 
(3, 6), conductors (4, 5), G10 structure 
columns (8) (left); improvement of 
mating surfaces (right) [21]. 

7.  CHS Using Shape Memory Alloy (SMA) 
Shape memory alloys (SMAs) can recover large strains (e.g., up to 8%) by undergoing a temperature-
induced phase transformation. This strain recovery can occur against large forces, resulting in their use 
as actuators. Although research into potential CHS applications of low temperature SMA materials has 
been explored, the science and understanding of phenomena in the cryogenic realm is still in its infancy.   

Research work to combine novel SMA material systems with approaches for the management of heat 
flow in the range of 4 K to 400 K was conducted by researchers from NASA Kennedy Space Center 
[23-26]. Alloys providing two-way actuation at cryogenic temperatures are the chief target. Swanger et 
al. reports a novel mechanical training apparatus for the controlled movement of rectangular strips, with 
S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature 
sensors and a low heat-leak linear actuator with a magnetic coupling. Operations included both training 
cycles and verification of shape memory movement showing that SMAs can recover large strains (e.g., 
up to 8%) by undergoing a temperature-induced phase transformation. This strain recovery can occur 
against large forces, resulting in their use cut-away of the Apparatus for Low-Temperature Training of 
Materials (ALTM) system shown in figure 7.  

Benefan and Notardonato [24] developed a shape memory alloy activated heat pipe-based thermal 
switch for cryogenic use in future Moon and Mars missions to reject heat from a cryogen tank into space 
during the night cycle while providing thermal isolation during the day cycle. A design of the thermal 
conduction switch is based on a biased, two-way SMA actuator and utilizes a commercially available 
NiTi alloy to demonstrate the feasibility of this concept [25], as shown in figure 7c. A custom Ni-Ti-Fe 
based SMA with a reversible transformation was used as the sensing and actuating elements while 
thermomechanical actuation was accomplished through an antagonistic spring system. The system 
thermal performance using a variable length, closed two-phase heat pipe gave heat transfer rates of 13 
W using pentane and 10 W using R-134a as working fluids. 

 

Figure 7. Typical S-shaped SMA 
specimen (a); cutaway of ALTM 
hardware configuration (b) [23]; 
design of a SMA CHS working 
between on/off states in Moon and 
Mars environments (c) [24]. 

 

8.  CHS Using Bimetal & HTS 
An energy efficient cryogenic transfer line with magnetic suspension operated by a bimetal CHS has 
been prototyped and cryogenically tested by Shu et al. [27-29]. A prototype transfer line exhibited 
cryogen saving potential of 30-35% in the suspension state as compared to its normal support state. Key 
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technologies developed include novel magnetic levitation using multiple-pole high temperature 
superconductor (HTS) with rare earth permanent-magnet (PM) elements and the smart cryogenic 
actuator as the warm support structure. These technologies have applications for extremely low heat leak 
cryogenic storage tanks, transfer lines, superconducting magnetic bearings, and smart heat switches.     

 Three performance indices are emphasized and studied in all MagLev configurations: (i) sagging 
distance, (ii) final levitation gap, and (iii) levitation forces. Shown in figure 8a is a concept using four 
poles to form the support system. Variations from this concept are also adaptable to transfer line support 
design depending on the pipeline orientation and fabrication requirements. The YBCO HTS can be 
curved tiles or rectangular blocks. With one pole, at a displacement of 2-3 mm, a levitation force of 20-
40 N was easily achieved. A warm support structure is required in such a MagLev transfer line to keep 
the inner line supported at the warm condition when the HTS levitation units are deactivated.  Shown in 
figure 8b, the passive actuator does not require power supply, control electronics, and is able to move 
its working arm over a 6 mm distance and carry up to 60 N per support. The design of a 6-m cryogen 
transfer line is shown in figure 8c.  

 

 

 

 

Figure 8. Multiple-pole 
magnetic levitation [27] (a); 
bimetal thermal actuator 
cooled by LN2 [28] (b); and 
design for a 6-m cryogen 
transfer-line with bimetal 
CTS-HTS magnet levitation 
[29] (c). 

9.  Gap Heat Switch (GGHS) 
The GGHS device has been widely and effectively implemented for thermal management over large 
temperature ranges. These devices rely upon adding or removing gas from the interior of the hermetical 
switch body to thermally link or unlink portions of the switch. The gas characteristics and adsorption 
properties must be taken into account to determine a functioning temperature range. For instance, below 
about 0.2 K GGHS are not usable since the saturated vapor pressure of even He3 is too low to provide 
much conduction [5]. Inside the hermetically sealed shell are two conductive fins (or other shapes) that 
are attached respectively to one cold end or the warm end, and separated by narrow gaps. If gas is 
removed from the switch interior by cold getter, the switch is ‘off’. The heat leak from one end of the 
switch to the other is dictated by the conductance of the shell. When gas is refilled in by heating getter, 
the switch is ‘on’ and heat flows through the gas between the fins. In the ‘on’ state the switch must have 
a large surface area and a small gap between the warm and cold surfaces.  

9.1  GGHS using H2 and Ne as heat exchange gases  
The CHS were developed by Vanapalli [30], Catarino [31] as shown in figure 9.  For neon, the minimum 
temperature to actuate the switch ranges from 17 K to 40 K; for hydrogen the range is from 9.5 K up to 
55 K. The measured values for the thermal ‘on’ conductance are 74 mW/K at 20 K for neon and 110 
mW/K at 11 K for hydrogen. For neon, an ‘on/off’ conductance ratio of about 220 is obtained at 20 K, 
and for hydrogen, a ratio near 440 was measured at 11 K. 
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Figure 9. Schematic and sectional 
drawing of the GGHS prototype [31]. 

9.2 GGHS using He4 and He3 
One of distinctive applications for helium devices is in magneto-instruments (optical or electrical) with 
variable temperature sample cooled by cryogen-free cryocooler or by a liquid helium bath. Reported by 
Berryhill [32], the GGHS allows the sample temperature to be varied from 4 K to 300 K while 
maintaining the magnet at 4.2 K. Kimball and Shirron presented GGHS with low activation power and 
quick-switching time for other low-temperature applications [33,34]. The GGHS with Soft X-ray 
Spectrometer instrument on the Japanese Astro-H mission [33] requires less than 0.5 mW of power to 
operate, has on/off transition times of <1 minute, and achieves a conductance of >50 mW/K at 1 K with 
a heat leak of <0.5 µW from 1 K to very low temperature. Details of the switch design are shown in 
figure 10. Inside the shell are tapered fins connected to either end of the GGHS shell, but separate from 
one another by a 0.36 mm gap. The getter material at the top of the switch is bituminous charcoal. 

  

Figure 10. Switch ready for 
integratioN [33] (left); cut-away view 
of GGTS with enlarged view of the 
orbital-welded joints that allow the 
reentrant titanium shell [33] (middle); 
bellows-sealed GGTS with external 
Vespel support and 38-mm outer 
flanges [5] (right). 

Dipirro [5,13] and Hepburn [35] respectively introduced their works about the portable, cryogen-free 
ultra-low temperature cooling system using a continuous ADR. The system can continuously cool to 50 
mK with a cooling power about 20 µW at 100 mK. The GGHS with He3 shown in figure 10c is a crucial 
device to manage the heat flow in the system. GGHS shells have been made from polymers (for instance, 
Vespel™) or composites which are lined or overlapped with a low conductance metal foil and bonded 
in place with epoxy. The foil liner must be defect-free: pin holes would provide a disastrously large leak 
path. Meeting a design life of 5 years and losing no more than 25% of the charge requires a 
leak/permeation rate of <5 x10-9 standard cm3/s. A comparable switch of Vespel without foil was over 
three orders of magnitude worse than required. The He4 can form a superfluid film trapped between the 
foil and the polymer shell. Substituting He3 was successful in solving this problem on the XRS project. 
As an alternative to polymers and composites, all-metal shells of titanium alloy Ti 15-3-3-3 are used for 
gas containment. To speed the pumping and reduce the heat from getter, a heat sink is added midway 
down the pumping line. The amount of gas and getter material in a GGHS is balanced to allow a turn 
‘on’ temperature that is not too high as well as a turn ‘off’ temperature that is high enough to be quickly 
reached when the getter heater is turned off. 

9.3 Passively operated GGHS 
These can be passively turned off without the need for a separate, thermally activated getter have been 
developed. Vanapalli [36] reported a passive GGHS around 250–310 K while Dipirro [37-39] published 
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several passive GGHS near 0.2–13 K. Performance of GGHS at <13 K relies on the strong temperature 
dependence of the vapor pressure of He4 adsorbed onto neon or copper substances, respectively, when 
the coverage is less than one monolayer. Difference in binding energies of He4 to the neon or copper 
give rise to different temperatures where the switches transition between on/off. For passive operation 
the switch must operate in the molecular limit so that a change in vapor pressure has an appreciable 
effect on conductance. Equally important, the vapor pressure must be a very strong function of 
temperature near the desired on/off point. Where the switch links the refrigeration stage to a fixed heat 
sink, rapid turn off is critical for minimizing the parasitic heat flow that will occur when the stage cools 
below the sink temperature.  

The properties of He3 are almost ideal for a passive switch operation at very low temperature. Its 
saturated vapor pressure (SVP) varies as an exponential of one over temperature. Over the range from 
0.15 K to 0.20 K the SVP changes over 1000, providing the means for a very high switch ratio. Dipirro 
also employed He3 condensed as a thin film on alternating plates of copper. The switch is thermally 
conductive above about 0.2 K and is insulating on either end of the switch cooled below 0.15 K. The 
‘on’ conductance is 7 mW/K at 0.22 K.  

10.  Conclusion 
Cryogenic heat switches (CHS) are crucial for thermal management in many applications. Various CHS 
have been developed with different principles and methodology for particular applications for operating 
at temperatures from tens of mK up to about 400K. An idealized performance chart of the range of 
different CHS technologies, based on the heat flow ratio of equation (2), is given in figure 11. 

 
Figure 11. Idealized and simplified performance chart of cryogenic heat switches. 

 
Some of CHS have been successfully implemented in space and universal explorations as well as for 
researches at laboratories. However, some of CHS technologies are still in an infant stage. Many designs 
and highly unique and specialized to a given case, but other opportunities exist for more generalized 
approaches for solving common problems across industry segments. Detailed and precise information 
must refer to each section of the paper. Combining materials, design, fabrication, and experimental 
researches, there are many challenges yet waiting for us to face and to resolve in the management of 
heat at cryogenic temperatures.  
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