FABRICATION AND TEST OF HIGH POWER COUPLERS FOR SUPERCONDUCTING ACCELERATORS

Submitted by:

Steven Einarson, Todd A. Treado; William Guss. and Michael Tracy, Communications and Power Industries, Inc.
Beverly Microwave Division, 150 Sohier Road, Beverly, MA 01915-5595 USA, 978 922-6000
and Joe Susta and Quan-Sheng Shu, AMAC International, Inc., Applied Research Center, Suite 348, 12050 Jefferson Ave.
Newport News, VA 23606 USA, 757 249-3595

Abstract

Communications and Power Industries (CPI) and AMAC International have jointly developed window couplers for superconducting accelerators operating at 805 MHz. Three window, couplers where delivered to Jefferson Labs in the spring of 2002. The couplers were conditioned at JLAB at room temperature and were successfully qualified as prototypes for the SNS in May 2002. The couplers reached 1 MW traveling wave at 1 ms pulse widths for 30 Hz and 2.8 MW standing wave at 0.15 ms for 60 Hz.

In this collaborative effort, AMAC was responsible for the design of the couplers and CPI was responsible for the coupler fabrication and cold test. CPI also provided design for manufacturability assistance. In this presentation we focus on the design, fabrication, and test of the window couplers. The SNS prototype window. coupler contain an alumina disk window and a water cooled center conductor as shown in Figure 1. Standard microwave tube industry fabrication procedures were used to assemble the window coupler.

We will also discuss some lessons learned relevant to cost reduction which may apply to future window couplers.

CPI and AMAC have also collaborated on the development of novel window couplers funded by a US Department of Energy SBIR program. These window couplers utilize a unique compression ring technology previously demonstrated by AMAC. We will compare the compression ring window couplers which the SNS prototypes which contain the ceramic under tension

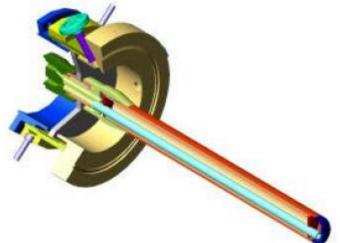


Figure 1. AMAC-CPI window coupler developed as SNS prototype.

^{*} Funding for this effort provided under SURA/JLAB contract no. SURA-02-C0120 and under US DOE grant no. DE-FG02-99ER82739