SUPERCONDUCTING ENGINEERING

Quan-Sheng Shu

(Chief Editor & Main Author)

Machinery Industry Publishing House of China

1989, (ISBN 7-111-00173-7/TM.36)

Book Review

Machinery Industry Publishing House of China

"The development and application of superconducting materials represent one of the most significant advancements in modern science and technology. The utilization of superconducting materials continues to play a pivotal role in advancing science, industry, and the economy.

This book "Superconducting Engineering" offers 570 pages of comprehensive information, encompassing some of the most crucial aspects of superconducting theory, superconductive materials. superconducting magnets, and applications of superconductivity. The applications and devices introduced in this text include, but are not limited to, superconducting magnets, equipment used in high-energy physics and fusion, MHD (Magnetohydrodynamics) technology, motors, generators, power transmission lines, magnetic separation machines, Josephson devices, and various biomedical applications. Additionally, this book systematically introduces design

techniques for superconducting instruments and cryostats.

'Superconducting Engineering' is meticulously organized and references many excellent sources within the fields of interest. This makes it an invaluable resource for scientists, researchers, engineers, professors, graduate students, and technicians interested in the fields of cryogenics and superconductivity.

SUPERCONDUCTING ENGINEERING

Quan-Sheng Shu

(Chief Editor & Main Author)

Preface		
Introduction		
Chapter 1	Superconductivity Principle	1
Chapter 2	Superconducting Materials	35
Chapter 3	Superconducting Magnets for Laboratories	57
Chapter 4	Cooling of Superconducting Magnets	76
Chapter 5	Power and Protection of Superconducting Magnets	98
Chapter 6	Applications in High Energy Physics	111
Chapter 7	Applications in Thermonuclear Fusion	145
Chapter 8	Applications in MHD Power Generators	179
Chapter 9	Applications in Motors and Generators	210
Chapter 10	Superconducting Power Transmission	237
Chapter 11	Superconducting Magnetic-Separating Devices	263
Chapter 12	Other Applications of Superconductivity	285
Chapter 13	Josephson Effect and Applications	312
Chapter 14	Applications in Biomedical-life Science	350
Chapter 15	Superconducting in Instruments	375
Chapter 16	Property Measurements of Superconducting Materials	405
Chapter 17	Measurements of Cryogenic Temperatures	419
Chapter 18	Measurements of Cryogenic Liquid Levels	442
Chapter 19	Cryostat and Dewars	465
Chapter 20	Properties of Cryogenic Materials	483
Chapter 21	Cryogenic Properties of He and N2	553
Appendix		

Machinery Industry Publishing House of China 1989, (ISBN 7-111-00173-7/TM.36)